Evaluación de la toxicidad renal de Paxlovid en el tratamiento de la Covid-19 .

Autores/as

Palabras clave:

nirmatrelvir/ritonavir, paxlovid, COVID-19, nefrotoxicidad

Resumen

La reciente epidemia de la COVID-19, fue resuelta en gran medida por la aplicación de las vacunas contra el virus SARSCoV2 previniendo la hospitalización y la muerte, sin embargo, las personas vacunadas aún pueden contraerla, por lo que el tratamiento farmacológico es importante, aunque no exento de reacciones adversas. Esta revisión bibliográfica tiene por objeto evaluar en la literatura la incidencia, los mecanismos subyacentes, los factores de riesgo y los resultados clínicos de la nefrotoxicidad, asociado con la terapia Paslovid ®, a fin de informar pautas evidentes para el manejo del paciente en el contexto del tratamiento con COVID-19. El Paxlovid ® es la combinación de dos fármacos Nirmatrelvir (NV) y Ritonavir (RV), Paxlovid ®, inhibiendo la proteasa de SARS-CoV-2 por lo que es un eficaz reductor de la gravedad y la duración de los síntomas de la COVID-19. Los datos obtenidos sugieren posibles efectos nefrotóxicos en un subconjunto de pacientes, resaltando que existen pocos estudios que aborden esta complicación durante el tratamiento con Paxlovid®, por lo que es necesario realizar una vigilancia estrecha de la función renal de los pacientes con factores de riesgo.

Biografía del autor/a

  • Fabián Arturo Cabrera Bertoni, Universidad Mesoamericana

    Médico Cirujano por la Universidad Autónoma de Chiapas. Posdoctorado en Política, Estudios Sociales y Culturales por el Centro de Estudios Superiores en Ciencias Jurídicas y Criminológicas (CESCIJUC), Ciudad de México. Doctor en Administración y Políticas Públicas (CESCIJUC). 

Referencias

Aimrane, A., Laaradia, M., Sereno, D., Perrin, P., Draoui, A., y Bougadir, B. (2022). Insight into covid- 19’s epidemiology, pathology, and treatment. heliyon. 8(1):e08799.

Al-Naimi, M., Rasheed, H., Hussien, N., Al-Kuraishy, H., y Al-Gareeb, A. (2019). Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. j adv pharm technol jul 1;10(3). , 95.

Berar, Yanay, N., Bogner, I., Saker, . . . Drug–Drug, P.-T. (2022). Interaction in a 23-year-old female kidney transplant patient with covid-19. Clin Drug Investig. 2022 Aug 1;42(8), 693.

Bethesda. (2020). Paxlovid. livertox: Clinical and research information on drug-induced liver injury. national institute of diabetes and digestive and kidney diseases.

CDC. (2022). Covid-19 after vaccination: Possible breakthrough infection [internet]. Available from: https://www.cdc.gov/coronavirus/2019- ncov/vaccines/effectiveness/why-measureeffectiveness/ breakthrough-cases.html.

Chawla, L., Bellomo, R., Bihorac, A., Goldstein, S., Siew, E., Bagshaw, S., y et al. (2017). Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (adqi) 16 workgroup. Nat Rev Nephrol 134. 13(4):241–57..

ClinicalTrials. (2023). Search of: Paxlovid | covid-19 - list results - clinicaltrials.gov [internet]. [cited 2023 mar 7]. Available from: https://clinicaltrials.gov/ct2/results?term=Paxlovidcond =COVID 19Search=Aplicar+agev = gndr = type =rslt = .

Corritori, S., Savchuk, N., y Pauza, C. (2022). Risk/benefit profiles of currently approved oral antivirals for treatment of covid-19: Similarities and differences. covid. 2(8):1057–76.

Couzin-Frankel, J. j. . A. (2021). Pfizer antiviral slashes covid-19 hospitalizations | science | aaas [internet]. science. 2021 [cited 2023 mar 7].

Devresse, A., Sébastien, Briol, De, Greef, J., . . . et al. (2022). Safety, efficacy, and relapse of nirmatrelvir-ritonavir in kidney transplant recipients infected with sars-cov-2. Kidney Int Reports. 7(11):2356.

Faour, W., Choaib, A., Issa, E., Choueiry, K., F. ansd Eland Shbaklo, Alhajj, M., y et al. (2022). Mechanisms of covid-19-induced kidney injury and current pharmacotherapies. inflamm res. 71(1), 39.

FDA. (2021). Fact sheet for healthcare providers emergency use authorization for paxlovid.

Fernando, K., Menon, S., Jansen, K., Naik, P., Nucci, G., Roberts, J., y et al. (2022). Achieving end-to-end success in the clinic: Pfizer’s learnings on rd productivity. drug discov today. 27(3), 697–704.

Fraiman, J., Erviti, J., Jones, M., . . . et al. (2022). Serious adverse events of special interest following mrna covid- 19 vaccination in randomized trials in adults. Vaccine. 40(40):5798–805..

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., y Hu, Y. (2020). Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet. 15;395(10223), 497–506.

Hung, Y., Lee, J., Chiu, C., Lee, C., Tsai, P., Hsu, I., y et al. (2020). Oral nirmatrelvir/ritonavir therapy for covid- 19: The dawn in the dark? Antibiot 2022, Vol 11;11(2), 220.

Iglesias, J. (2022). Nirmatrelvir más ritonavir (paxlovid) una potente combinación inhibidora de la proteasa 3clpro del sars-cov-2. Rev Española Quimioter. Jun 1;35(3), 236.

In, Vitro, y Drug. (2020). Interaction studies-cytochrome p450 enzyme and transporter-mediated drug interactions guidance for industry.

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., y et al. (2020). Structure of mpro from sars-cov-2 and discovery of its inhibitors. 582(7811), 289–93.

Kale, A., Shelke, V., Dagar, Anders, N., . . . AB. (2023). How to use covid 19 antiviral drugs in patients with chronic kidney disease. front pharmacol. , 149.

Kausar, S., Said, F., Khan, Ishaq, U. R. M. A. M. R. M. R. G., Mujeeb, y et al. (2021). A review: Mechanism of action of antiviral drugs. int j immunopathol pharmacol. , 1–12.

Lamb, Y. (2022). Nirmatrelvir plus ritonavir: First approval. drugs. 82(5), 585.

Leowattana, W. (2019). Antiviral drugs and acute kidney injury (aki). infect disord drug targets. 27;19, 375–82.

Mahase, E. (s.f.). Covid-19: Pfizer’s paxlovid is 89reports.

Meng, H., Mao, J., Ye, y Q. (2022). Booster vaccination strategy: Necessity, immunization objectives, immunization strategy, and safety. J Med Virol. 94(6):2369–75..

Mohiuddin, y A. (2019). Medication risk management. Inov Pharm. 10(1):9.3.

Nigam, S. (2018). The slc22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. annu rev pharmacol toxicol. , 58–663.

Oliveira, Silva, NA., de, Sene, Amâncio, . . . DO. (2021). Potential kidney damage associated with the use of remdesivir for covid-19: analysis of a pharmacovigilance database. Cad Saude Publica. 37(10):e00077721.

Owen, D., Allerton, C., Anderson, A., Aschenbrenner, L., Avery, M., Berritt, S., y et al. (2021). An oral sars-cov- 2 m pro inhibitor clinical candidate for the treatment of covid-19. science (80- ).374(6575):1586-93.

Patone, M., Mei, XW., Handunnetthi, L., Dixon, . . . et al. (2021). Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with covid-19 vaccination or sars-cov-2 infection. Nat Med 2021 282. 28(2):410–22..

Paxlovid. (2023). European medicines agency [internet]. ema.europa.eu. 2023 [cited 2023 mar. Available from:https://www.ema.europa.eu/en/medicines/human/EPAR/paxlovid.

Pazhayattil, G., y Shirali, A. (2014). Drug-induced impairment of renal function. int j nephrol renovasc dis. 7:457–68.

Pfizer. (2022). Paxlovidtm (nirmatrelvir tablets; ritonavir tablets) | pfizer medical information - us [internet]. 2022 [cited 2023 mar 7]. Available from: https://www.pfizermedicalinformation.com/enus/paxlovid.

Pfizer, E. (2021). Annex i conditions of use, conditions for distribution and patients targeted and conditions for safety monitoring addressed to member states.

Pfizer, I. (2023). Pfizer’s novel covid-19 oral antiviral treatment candidate reduced risk of hospitalization or death by 892/3 epic-hr study | pfizer [internet]. pfizer website. [cited 2023 mar 7]. Available from: https://www.pfizer.com/news/press-release/press-release detail/pfizers-novel-covid-19-oral-antiviraltreatment- candidate.

Prikis, M., y Cameron, A. (2022). Paxlovid (nirmatelvir/ ritonavir) and tacrolimus drug-drug interaction in a kidney transplant patient with sars-2-cov infection: Acase report. transplant. Proc.54(6):1557..

S, K, SR, P, A, A, . . . S. (2022). Drug interaction risk between cardioprotective drugs and drugs used in treatment of covid-19: A evidence-based review from six databases. Diabetes metab syndr. 16(3):102451. Lancet. 15;395(10223), 497–506.

Toomey, D., Wiener, E., Greene, N., Weisman, A., Wittels, K., yWilcox, S. (2020). Mystery medications and renal failure. j emerg med. 58(5), 807–9.

Ullrich, S., Ekanayake, K., Otting, G., y Nitsche, C. (2022). Main protease mutants of sars-cov-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett. 2022 Apr 15, 62.

Vangeel, L., Chiu, W., De Jonghe, S., Maes, P., Slechten, B., Raymenants, J., y et al. (2022). Remdesivir, molnupiravir and nirmatrelvir remain active against sarscov-2 omicron and other variants of concern. Antiviral Res.198:105252.

Wanwimolruk, S. (2014). Prachayasittikul v. cytochrome p450 enzyme mediated herbal drug interactions (part 1). EXCLI J, 13–347.

Wu, F., Zhao, S., Yu, B., Chen, Y., Wang, W., Song, Z., y et al. (2020). A new coronavirus associated with human respiratory disease in china. Nat 5797798, 265–9.

Young, C., Papiro, T., y Greenberg, J. (2023). Elevated tacrolimus levels after treatment with nirmatrelvir/ritonavir (paxlovid) for covid-19 infection in a child with a kidney transplant. pediatr nephrol. 38(4).

Zhang, L., Zhang, S., Han, J., Yi, Y., Zhou, H., y Li, J. (2022). Paxlovid administration in elderly patient with covid- 19 caused by omicron ba.2.0: A case report. medicine (baltimore). 101(45):E31361.

Descargas

Publicado

2024-06-01